Succinct Arguments

Lecture 01: Introduction and Background

Logistics

- Time: Mondays and Wednesdays, 10:15AM-11:45AM
- Location: AGH 214
- Course Website: pratyushmishra.com/classes/cis-7000-f25/
- Canvas: TBD
 - Reading assignments will be posted here
- EdStem: TBD
 - We'll use this for all course communications
 - Ask and answer questions!
- Waitlist: email me (prat@seas.upenn.edu) after class

Grading

Four key components to grading:

- Attendance + Participation (15%)
 - This is a research seminar! We're here to learn by discussing papers, and that requires participation.
 - Can also participate on Ed (eg: asking + answering questions)
- Reading assignments (15%)
 - For classes marked as discussions, I will post an short-answer assignment on Canvas before-hand
- Leading a paper discussion (25%)
 - Students are expected to lead a discussion on a paper. This will likely happen in the 2nd half of the class
- Final Project (45%)
 - Research project/literature survey

LECTURE

Course Structure

Part I: Theory

- What are interactive proofs and ZKPs?
- What is a zkSNARK?
- Constructions of zkSNARKs for circuits
 - From Linear IPs
 - From Polynomial IOPs + various polynomial commitments
- Recursive composition of SNARKs

Part II: Programming SNARKs

- PLs for SNARKs
- Formal verification for SNARKs
- Implementation/Systems for SNARKs

Part III: Applications

- Blockchains/transparency logs:
 - Privacy-preserving payments
 - Privacy-preserving smart-contracts
 - Rollups
 - Succinct blockchains
- Anonymous authentication/credentials
- Collaborative proving
- SNARKs to authenticate images/text/ video (stop ChatGPT!)

What does it mean to prove something?

Mathematical proofs = NP

Completeness: For all *true* theorems, \exists a proof \mathbf{w} that convinces the verifier

Soundness: For all *false* theorems, no claimed proof w can convince the verifier

Efficiency: The verifier is deterministic and runs in polynomial time.

Adding randomness and interaction

Completeness: For *true* theorems, \exists a prover that convinces the verifier wp 1.

Soundness: For *false* theorems, no prover can convince the verifier wp $\geq 1/2$.

Efficiency: The verifier is randomized and runs in probabilistic polynomial time.

Does it help? Yes!

CoNP ⊆ IP [GMW86]

IP = PSPACE [S92]

Delegation of computation [GKR08]

These bears are different colors.

How can I check this?

$$b \leftarrow \{0,1\}$$

If $b = 0$, do nothing

If $b = 1$, shuffle

b' := 0, if not

$$b \stackrel{?}{=} b'$$

Completeness: If the colors are different, then I will always detect shuffles.

Soundness: If the colors are not different, then I will guess wrong 1/2 the time.

Efficiency: Verifier only needs to flip a coin and shuffle.

What about privacy?

Let's say the prover exerted a lot of effort in trying to find the proof of a difficult conjecture.

She wants to get recognition for this, but doesn't trust others to not steal credit.

She needs a zero-knowledge proof.

Zero-knowledge proofs

Completeness: For *true* theorems, ∃ a prover that convinces the verifier wp 1.

Soundness: For *false* theorems, no prover can convince the verifier wp $\geq 1/2$.

Efficiency: The verifier is randomized and runs in probabilistic polynomial time.

Zero-knowledge: The verifier learns nothing about w except that it's valid.

Completeness: If the colors are different, then I will always detect shuffles.

Soundness: If the colors are not different, then I will guess wrong 1/2 the time.

Efficiency: Verifier only needs to flip a coin and shuffle.

Zero-knowledge: The verifier learns only that the colors are different; nothing else!

Many applications!

Private transactions Scalable and/or Private **Smart Contracts**

Decentralized multiplayer games

- Anonymous credentials [DFKP16]
- Prove existence of security vulnerability [DARPA Sieve, OBW22]
- Coercion-resistant voting [MACI]

Succinct Non-Interactive Arguments (SNARKs)

Mic94, Groth10, GGPR13, Groth16...
..., GWC19, CHM**M**VW20, ...

Succinctness: V runs in time much less than |F|

How to construct zkSNARKs? A: Polynomials!

